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Problem Statement 
Prove that the Set Intersection problem (defined below) is NP-complete.  Two things are required: 

• Show that Set Intersection is in NP. 
• Show that CNF-satisfiability is polynomially reducible to Set Intersection.  (Note: It is known from Cook’s proof 

that CNF-satisfiabillity is NP-complete.) 
 

Definition of the Set Intersection problem.  The input consists of the finite sets A1, A2, ..., Am and B1, B2, ..., Bn.    The 
problem is to decide whether there is a set S that meets the following two conditions.  

(1) The intersection of S with each of the Ai sets has at least one element in it.   
(2) The intersection of S with each of the Bj sets has at most one element in it. 

 

Hint: You need to find a way to translate the SAT input (a Boolean expression) into an input for set intersection.  Your goal 
is to construct set S so that it represents a truth assignment: there should be an obvious correspondence between the truth 
assignment and the items in set S.  You can make this happen by choosing an appropriate definition for how the clauses in 
SAT’s input are translated into sets Ai and Bj. 
        For example, suppose the CNF expression is (x1 ∨ x 2 )∧ (x 1 ∨ x 3 )∧ (x2 ) .  This is satisfied by the truth assignment x1 = 
true, x2 = true, and x3 = false. To help figure out the translation, choose mnemonic names for the elements in sets Ai and Bj.  I 
suggest using set element Ti to mean “xi is True” and set element Fi to mean “xi is false”.  So in this example, your goal is to 
define the translation from SAT’s clauses to sets Ai and Bj in such a way that set S is forced to be {T1, T2, F3}. In summary, 
you need to find a way to define sets Ai and Bj to make S behave this way.  (Things to watch out for: If the CNF expression 
cannot be satisfied, then the set intersection problem should come up with a "no" answer, and there should be no set S 
meeting the two conditions.  Also, make sure that set S can never contain both Ti and Fi; otherwise the elements in S cannot 
be interpreted as a truth assignment.) 

Hint: Start this problem by going over a few examples of the set intersection problem. Write down some sets A and B, and 
figure out if there is a solution set S.  Then go over some examples of the desired translation from SAT to set intersection: 
“Here is a Boolean formula.  What do we want set S to look like?  What rules can we use for translating from the Boolean 
formula to sets A and B, in order to force set S to look like this?”  Figure out how the size of the SAT input will determine 
the size of the set-intersection input that you construct.  Suppose the SAT input contains U literals, V clauses, and W Boolean 
variables. How will you use the values U, V, and W to choose values for m and n in the set intersection problem? 
 
 
 
 
 
Solution 
 

Part 0: describe how the input size is measured.  Call the input size “Isize”, since "n" is already used for the number of B sets.  
The input size Isize is the sum of the set sizes:  Isize = |A1| + |A2| +...+ |Am| + |B1| + |B2| +...+ |Bn|.    Let K denote the number of 
distinct elements in the input sets:  K =  |A1 ∪ A2 ∪ ... ∪ Am ∪ B1 ∪ B2 ∪ ... ∪ Bn|.  By definition, K≤Isize. 
 

Part 1: set intersection is in NP.  A guessed solution consists of a subset of the K elements in the input sets.  The number of 
guessed solutions is 2K, since each of the K elements can be included or excluded from the guessed solution set.  Check a 
solution S by computing Ai ∩ S for 1≤i≤m and computing Bj ∩ S for 1≤j≤n.  This takes time polynomial in the input size 
Isize.  [Here is a quick upper bound to prove this.  Checking a solution requires at most Isize set intersections to be computed.  
Each set intersection involves two sets that have at most Isize elements each.  Thus, the time for one set intersection is O(Isize

2) 
and the overall checking time is O(Isize

3).] 
 



Part 2:  CNF Satisfiability can be polynomially-reduced to set intersection.  The input to satisfiability is a CNF expression, 
consisting of U literals arranged into V clauses.  The number of Boolean variables is W.  (For example, 
(x 1 ∨ x2 )∧ (x1 ∨ x3 )∧ (x 2 ∨ x4 ∨ x3)  has 7 literals arranged into 3 clauses.  There are 4 Boolean variables: x1, x2, x3, x4.)  
Define transform T as follows.  (Clearly this transform can be computed in polynomial time.) 

• Translate clause i in the CNF expression into set Ai as follows.  Throw away the logical "or" operators.  Turn each 
unnegated literal xi into set element Ti.  Turn each negated literal x i  into set element Fi.  Do this for all clauses 
(1≤i≤V).  The value m in the set intersection problem is equal to V (the number of clauses) in the CNF satisfiability 
problem. 

• For 1≤j≤W, define Bj = {Tj, Fj}.  The value n in the set intersection problem is equal to W (number of Boolean 
variables) in the CNF satisfiability problem.  We see that Isize = U + 2*W and K=2*W. 

 

Here is an example of this transform from CNF satisfiability to set intersection (using a b c instead of x1 x2 x3): 
The input to CNF satisfiability is (a ∨ b ∨ c)∧ (a ∨ c )∧ (b ∨ c)∧ (a ∨ b) .    In this case, U = 9, V = 4, and W = 3. 
The transform produces this input for the set intersection problem (m = 4, n = 3, Isize = 15, and K = 6): 
A1 = {Ta, Fb, Tc} A2 = {Fa, Fc} A3 = {Tb, Tc} A4 = {Ta, Tb} B1 = {Ta, Fa}  B2 = {Tb, Fb} B3 = {Tc, Fc} 
The solutions to these two problems correspond. For example, the truth assignment "a=True, b=True, c=False" satisfies 
the CNF expression; similarly "S={Ta, Tb, Fc}" solves the set intersection problem. 

 
 
 

Justification that this transform is correct.  
The sets Bj ensure that set S cannot contain both Tj and Fj.  Therefore, the elements in set S can be interpreted as a truth 
assignment: each variable is either True or False (but not both at once). 
 

The sets Ai force set S to define a truth assignment that satisfies the CNF expression.  Each set Ai corresponds to one clause 
of the CNF expression.  Since set S has a non-empty intersection with Ai, the truth assignment in S must satisfy clause 
number i in the CNF expression.  [Note: if S does not contain either Tj or Fj, this means that xj can be either True or False; 
either way, the CNF expression is satisfied by the other elements in S.]     
 
 


